| ティーキューブ擁壁の部材応力度計算(カラマツ材) |  |  |  | 
 
  |  |  | 
 
  | 1. 設計条件 |  | 
 
  | 1.1 使用材料および許容応力度 |  | 
 
  | (1)木材 |  | 
 
  |  | 使用樹種 |  | カラマツ |  | 
 
  |  | 許容応力度 |  | 圧縮 |  | 7.0 | N/mm2 | 
 
  |  | 引張,曲げ |  | 9.0 | N/mm2 | 
 
  |  | せん断 |  | 0.7 | N/mm2 | 
 
  |  | 繊維直角方向支圧 | 2.5 | N/mm2 | 
 
  | (2)鋼材 |  | 
 
  |  | 使用材料 |  | ボルト |  | 140 | N/mm2 | 
 
  |  | 
 
  | 1.2 作用荷重 |  | 
 
  |  | 中詰砕石による内圧 |  | q= |  | 10.0 | kN/m2 | 
 
  |  | 一部材の負担幅 |  | b= |  | 0.2 | m | 
 
  |  | 一部材に作用する荷重 |  | p=q*b= |  | 2.0 | kN/m | 
 
  |  |  |  | 
 
  | 2. 部材の検討 |  | 
 
  | 2.1 断面力 |  | 
 
  |  | 中央支間 |  | L= |  | 0.40 | m | 
 
  |  | 張り出し長 |  | a= |  | 0.20 | m | 
 
  |  | 支点反力 |  | R=p(L+2a)/2= | 0.80 | kN | 
 
  |  | 支点部せん断力 |  | S=p*a= |  | 0.40 | kN | 
 
  |  | 支点部曲げモーメント |  | Ms=p*a2/2 |  | 0.04 | kN・m | 
 
  |  | 支間曲げモーメント |  | Mc=pL2/8-Ms= | 0.00 | kN・m | 
 
  |  |  |  | 
 
  | 2.2 断面応力度 |  | 
 
  |  | 支点断面 |  | b= | 60 | mm |  | 
 
  |  | h= | 50 | mm |  | 
 
  |  | 断面積 |  | A=b*h= | 3000 | mm2 |  | 
 
  |  | 断面係数 |  | Z=b*h2/6= | 25000 | mm3 |  | 
 
  |  | 曲げ応力度 |  | σb=M/Z= | 1.60 | ≦σba = 9.0 N/mm2 −OK | 
 
  |  | せん断応力度 | τ=S/A*3/2= | 0.20 | ≦σba = 0.7 N/mm3 −OK | 
 
  |  | 
 
  | 3. 接合部の検討 |  | 
 
  | 3.1 ボルト |  | 
 
  |  | ボルト方向に作用する荷重 | P=R/sin45°= | 1.13 | kN | 
 
  |  | ボルトの直径 |  | d= |  | 8 | mm | 
 
  |  | ボルトの断面積 |  | A=πd2/4= |  | 50 | mm2 | 
 
  |  | ボルトの応力度 | σt=P/A= | 22.5 | ≦σta = 140 N/mm2 −OK | 
 
  |  |  |  | 
 
  | 3.2 座金部支圧応力度 |  |  |  | 
 
  |  | 座金の外形 |  | D= |  | 30 | mm | 
 
  |  | ボルト孔の直径 |  | d= |  | 12 | mm | 
 
  |  | 支圧面積 |  | A=π/4(D2-d2)= | 594 | mm2 | 
 
  |  | 支圧応力度 |  | σc=P/A= | 1.91 | ≦σca =2.5 N/mm2 −OK | 
 
  |  |  |  | 
 
  | 3.3 支柱支圧応力度 |  | 
 
  |  | ボルト直角方向に作用する荷重 | P=R/sin45°= | 1.13 | kN | 
 
  |  | 丸太の直径 |  | D= |  | 100 | mm | 
 
  |  | 支圧面積 |  | A=D*d= |  | 800 | mm2 | 
 
  |  | 支圧応力度 |  | σc=P/A= | 1.41 | ≦σca =2.5 N/mm3 −OK | 
 
 
  |  |  |  |  |  |  |  |  |